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Abstract. We describe a new model for representing semantic work-
flows as semantically labeled graphs, together with a related model for
knowledge intensive similarity measures. The application of this model
to scientific and business workflows is discussed. Experimental evalua-
tions show that similarity measures can be modeled that are well aligned
with manual similarity assessments. Further, new algorithms for work-
flow similarity computation based on A* search are described. A new
retrieval algorithm is introduced that goes beyond traditional sequential
retrieval for graphs, interweaving similarity computation with case selec-
tion. Significant reductions on the overall retrieval time are demonstrated
without sacrificing the correctness of the computed similarity.

1 Introduction

Today, workflows are an established means for modeling business processes and
to automatically control their execution. Recently, workflows are more widely
used for many purposes different from business process automation. Scientific
workflows are executable descriptions of automatable scientific processes such as
computational science simulations and data analyses [18]. Further, workflows are
used for modeling medical guidelines, to represent project plans, or to describe
information gathering strategies. Such new applications of workflows typically
deal with a number of new difficulties, particularly due to an increasing num-
ber of workflows potentially relevant, an increasing complexity of the individual
workflows, and an increased demand for more flexibility (agile workflows). To
deal with those new challenges in workflow management, reasoning methods for
semantically enriched workflow representations have a high potential to support
workflow modeling, composition, adaptation, analysis, and optimization. This is
what we call semantic workflow reasoning. Also case-based reasoning (CBR) has
already demonstrated its high potential in semantic workflow applications [19,
15, 3, 14, 9, 7, 17]. Repositories of workflows can be used as case bases, enabling
the application of case retrieval and adaptation methods.

In this paper we focus on case retrieval of semantic workflows as one method
that contributes to semantic workflow reasoning. Workflow cases clearly belong



to the class of highly structured case representations, for which graph-based rep-
resentations are promising [8, 6, 14–16]. A particular challenge is the similarity-
based retrieval of semantic workflow descriptions, as workflow similarity enables
to retrieve workflows that do not match the query exactly, but that are a good
starting point for adaptation. However, previous work on workflow retrieval ei-
ther ignores the graph structure but uses a simple flat case representation [3],
use (parts of) the graph structure, but only uses textual labels instead of seman-
tic descriptions [16, 14, 11, 8, 7], or uses semantically annotated graph structures,
but a crisp matching approach rather than similarity [9].

In this paper, we present a new general framework for workflow and re-
lated similarity modeling. Workflows are represented as semantically annotated
graphs, extending previous proposals for graph-based workflow representations
[16, 8, 17]. The well-known local/global principle to modeling similarity measures
[4, 2] is extended to these graph representations, providing a flexible means for
workflow similarity modeling. This framework is domain independent and gen-
eral in the sense that it covers control-flow oriented workflows such as business
processes as well as data-flow oriented workflows such as scientific workflows.
As with all graph-based representations, the computational complexity of the
similarity computation becomes a critical issue during retrieval. As a second
contribution of this paper, we developed and analyzed several approaches for
similarity computation and retrieval based on different search algorithms. The
third contribution is the application and experimental evaluation of the frame-
work and the retrieval algorithms in two different application areas.

2 Semantic Workflows and Workflow Retrieval

Workflow representations typically reflect the dataflow or control flow structure
among the tasks of a process. Today, various workflow representation formats are
used, depending on the kind of workflow. Representation approaches for business
workflows have a strong focus on the control flow, usually implementing (some
of) the workflow patterns proposed by van Aalst. Typical control flow patterns
are sequence, and-split, and-join, xor-split, xor-join, and possibly loops. Figure
1a shows an example of a business workflow within a University administration,
according the representation used in the CAKE project [3, 16] at the Univer-
sity of Trier. On the other hand, scientific workflows have a strong focus on the
dataflow, typically restricting the control flow to a partial ordering of the tasks.
Such a simple control structure offers several advantages and has been sufficient
to support a variety of applications [18]. Each task (or software component) in
the scientific workflow can have input datasets and input parameters, as well
as output datasets. Dataflow links indicate what data are output by a task and
consumed by another task. Figure 1b shows an example of a scientific work-
flow describing some data mining process according to the representation in the
Wings project [10] at the Information Sciences Institute. Semantic workflow rep-
resentations enrich the above described workflow formats by adding meta data
and constraints to the individual elements of the workflow. Ontologies are used
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Fig. 1. Example of an administrative business workflow.

to formalize the respective workflow domain by organizing the metadata descrip-
tions of the occurring workflow elements. This allows to capture the semantics
of tasks, data items, and control flow items.

The workflow representation in the CAKE system [3] uses an object-oriented
representation (originally developed for cases) for ontology representation and
metadata annotation. Tasks can be organized in a hierarchy of classes, each of
which contains certain properties of a task, which can be inherited from the super
class. For example, the Assign room task includes a role description stating that
the assignment must be performed by the responsible administrative depart-
ment. Another property may state the average duration for task execution. The
semantic workflow representations in Wings augment traditional workflow repre-
sentations with semantic constraints that indicate metadata properties of work-
flow tasks and datasets [9, 10]. Each workflow constituent has a workflow variable
associated with it, and the semantic constraints express constraints over those
variables. In the case of data variables, the constraints are expressed in terms of
metadata properties. For example, an input dataset may be restricted to be a
discrete dataset, and if so then its variable would have a constraint stating that
it has the property of being discrete. In the case of components, the constraints
express how the execution of the software component changes the metadata prop-
erties of the input datasets into output datasets. Wings uses workflow reasoning



algorithms to enrich workflows by propagating the constraints throughout the
workflow structure [9]. This algorithm takes simple workflow graphs created by
users and automatically augments them with semantic information by adding
and propagating semantic constraints that can be used for subsequent retrieval
as we propose in this paper.

For semantic workflow representation some languages that include semantic
constraints expressed in OWL have been proposed, such as OWL-S, WSMO,
SWSL, and SWSF. These languages include task decomposition structures and
complex precondition expressions. Our CAKE and Wings approaches could be
used with any of those languages, though only a small subset of the constructs
allowed in those languages are used in our systems.

For workflow retrieval, several CBR and related approaches exist today. The
CODAW system [15] supports incremental modeling of workflows by a similarity-
based reuse of the workflow templates using an HTN planner that employs an
inexact, graph-based matching. Leake et al. [14] evaluate the execution paths of
past workflows in order to support user extension of workflows that are under
construction. Recently, a probabilistic similarity model for workflow execution
paths was proposed [1]. The myGrid project3 focuses on the discovery, reuse and
repurposing of bioinformatics workflows [12]. They distinguish between direct
re-use of an existing workflow as is and re-purposing an existing workflow by
modifying some aspect of it. Goderis [12] defines requirements and bottlenecks
for workflow re-use based on many user interviews and practical experiences.

Previous work investigated structure-less workflow retrieval based on query
and workflow representation being plain textual descriptions or sets of (social)
tags [12], or abstract workflow features [3]. Queries including structural proper-
ties of the workflows are treated using graph matching approaches such as sub-
graph isomorphism or edit-distance measures [12, 16, 14, 8]. Matching techniques
based on semantic types of data has been done for the discovery of individual
services or software components [13], but not for the more complex structures
that workflows represent. Semantically annotated graph structures are used in
workflow retrieval in Wings [9], but retrieval is restricted to crisp matching, not
incorporating similarity measures.

3 Graph-based Framework for Workflow Similarity

3.1 Representation of Semantic Workflows

In line with previous work on graph-based workflow representation [5, 8], we
represent workflows as semantically labeled directed graphs W = (N,E, S, T )
where N is a set of nodes and E ⊆ N × N is a set of edges. T : N ∪ E → Ω
associates to each node and each edge a type from Ω. S : N ∪E → Σ associates
to each node and each edge a semantic description from a semantic meta data
language Σ. While Ω is fixed for the used workflow representation, Σ is domain
dependent. We do not demand a particular language for Σ, but just assume some

3 www.mygrid.org.uk



language for semantic metadata for which similarity measures can be defined (see
Sect. 3.2). This general graph structure can be used to represent different kinds
of workflows, such as scientific or business workflows. It is further specialized for
the representation of workflows by distinguishing different types of nodes and
edges, enumerated in Ω and assigned through T :

Each workflow consists of exactly one workflow node. The semantic de-
scription associated to a workflow node represents some overall properties of the
entire workflow. This can be a workflow classification in some ontology, a set of
semantic tags, or other properties related to the quality or execution require-
ments of the workflow.

Each task in a workflow is represented by a task node. Its semantic de-
scription typically classifies the task in some task ontology and may provide
additional functional properties of the task. It also includes the description of
workflow roles (i.e. human agents or services) for the execution of those tasks.

Each data item in a workflow is represented by a data node. Its semantic
description classifies the data item within some data type ontology and may
specify certain data properties (e.g. a data set has missing values) relevant for
retrieval. Control-flow centric workflows (Fig. 1a) may have no data nodes.

Each control flow element in a workflow, such as split/join elements for
and/xor blocks, are represented as a control-flow node. The semantic descrip-
tion of a control flow node specifies which control flow element is represented.
Data-centric workflows (e.g. Fig. 1b) may have no control flow nodes.

The workflow node is linked to each of the other nodes by a part-of edge.
The semantic description of such an edge specifies the role of the associated
node within the overall workflow. Data nodes can be linked with the work-
flow node via edges having one of the following semantic description: is-input,
is-output, is-intermediate, is-parameter. For example, in Fig. 1b inputData1 is
overall workflow input data and hence linked with is-input. inputData in Fig. 1b
is data produced and further processed within the workflow and is hence linked
with is-intermediate. Further, the semantic descriptions for part-of edges include
has-task for task nodes linked to a workflow node and has-control for links to
control-flow nodes.

The dataflow among tasks is represented using dataflow edges. A dataflow
edge links data nodes to task nodes and vice versa. The semantic description of
such an edge indicates whether the data item was consumed as input data or
produced as output data by the task. All arrows shown in Fig. 1b are turned into
dataflow edges in the graph.

The control-flow among tasks is represented using control-flow edges. Such
an edge connects two task nodes or a task node with a control-flow node. An
edge from node n1 to n2 indicates that node n2 may be executed after node n1.
All arrows shown in Fig. 1a will be turned into control-flow edges in the graph.

Semantic constraints among properties of data nodes are represented using
constraint edges that connect two data nodes. The semantic description in-
cludes the definition of a constraint. For example, a constraint may state that
test and training data must come from the same domain.
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Fig. 2. Fraction of a workflow graph: the Resample and Discretize task are shown.

Figure 2 shows the graph representation of a fraction of the workflow from
Fig. 1b. It shows one workflow node (circle), four data nodes (ovals), and two
task nodes (boxes) as well as some of the edges. A simplified fraction of the
semantic descriptions of a data and a task node are shown in the grey boxes.

In the following, we assume that a repository of workflows is given, which
we consider as case-base CB = {CW1, ...CWn}. We aim at retrieving workflows
from this case base given a particular query. This query QW is also a workflow
in the above described representation. It just specifies some workflow elements
together with the semantic description that are considered requirements on the
workflows to be retrieved. For example, a query could state that someone is
looking for workflows that first discretize some continuous data and then use
the discrete data in a decision tree modeler. Hence, the query would contain
a workflow node, two data notes: one specifying the continuous data and one
specifying the discretized intermediate data. Further, it includes two task nodes,
one that specifies a task that can discretize data and one that specifies a task
which is from the class decision tree modeler. The respective edges are included
in the query as well. The similarity-based retrieval we aim at, could then retrieve
for example the workflow shown in Fig. 1b, although it is not a perfect match
as the modeler task in this workflow does not specify which concrete modeler to
be used. However, it can be potentially specialized to a decision tree modeler.
A different workflow from the repository containing a J48 modeler might be a
better match with respect to this task.

3.2 Modeling Workflow Similarity

In order to assess the similarity of a case workflow CW = (Nc, Ec, Sc, Tc) wrt. a
query QW = (Nq, Eq, Sq, Tq), we need to consider the constituents of the work-
flow as well as the link structure. This requires similarity models that enable the
comparison of workflow elements. We now present a new similarity model, which
can be considered an enhancement of the well-known local/global approach for
structural CBR [4, 2], particularly for object-oriented similarity measures [2].
The local similarity measures assess the similarity between two nodes or two



edges of the same type. The global similarity for workflows is obtained by an ag-
gregation function combining the local similarity values within a graph mapping
process. The local similarity assessments are based on the semantic descriptions
of the nodes and edges. Therefore, we assume a similarity function:

simΣ : Σ ×Σ → [0, 1].

The detailed formalization of this similarity measure depends on the language
Σ and can itself be modeled using the local/global approach aggregating local
similarity measures for the individual properties in the semantic description.
In our work, we treat the semantic descriptions in an object-oriented fashion
and use the well established similarity measures described in [2]. Thereby, class
hierarchies of tasks and data, as well as properties like those shown in Fig. 2 can
be appropriately considered in the similarity model.

Nodes of equal type have a similarity value assigned, based on the simi-
larity of the semantic descriptions. Based on simΣ , we define node similarity
simN (nq, nc) for nq ∈ Nq and nc ∈ Nc as follows:

simN (nq, nc) =

{
simΣ(Sq(nq), Sc(nc)) if Tq(nq) = Tc(nc)
0 otherwise

Edge similarity is more sophisticated as it should consider not just the semantic
description of the edges being compared, but also the nodes that are linked by
the edges. For example, two dataflow edges should only be considered similar if
they link similar data objects to similar tasks. To reflect such considerations, we
define edge similarity simE(eq, ec) for eq ∈ Eq and ec ∈ Ec as follows:

simE(eq, ec) =

FE

simΣ(Sq(eq), Sc(ec)),
simN (eq.l, ec.l),
simN (eq.r, ec.r)

 if Tq(eq) = Tc(ec)

0 otherwise

For an edge e, the expression e.l denotes the left node of the edge and e.r denotes
the right node. The function FE is an aggregation function that combines the
semantic similarity between the edges and the similarity of the connected nodes
to the overall similarity value. In our implementations we define FE as follows:
FE(Se, Sl, Sr) = Se · 0.5 · (Sl + Sr).

The overall workflow similarity between QW and CW is now defined by
means of a legal mapping, i.e., a type-preserving, partial, injective mapping func-
tion m : Nq ∪ Eq → Nc ∪ Ec that satisfies the following five constraints:

Tq(nq) = Tc(m(nq)) Tq(eq) = Tc(m(eq))
m(eq.l) = m(eq).l m(eq.r) = m(eq).r ∀x, y m(x) = m(y)→ x = y

Please note that in such a legal mapping m a case node or edge can only be the
target of one query node or edge, respectively. Since the mapping can be partial,
not all nodes and edges of the query must be mapped to the respective case
elements. Also an edge can only be mapped if the nodes that the edge connects



are also mapped to the respective nodes which are linked by the mapped edge.
The similarity between QW and CW wrt. a mapping m is now defined using a
second aggregation function FW for workflows as follows:

simm(QW,CW ) = FW

 (simN (n,m(n))|n ∈ Nq ∩Dom(m)),
(simE(e,m(e))|e ∈ Eq ∩Dom(m)),
|Nq|, |Eq|


The aggregation function combines the individual similarity values for mapped
nodes and edges to an overall similarity value wrt. the mapping m. Dom(m)
denotes the domain of m. The parameters |Nq| and |Eq| enables FW to consider
partial mappings, i.e. nodes and edges not mapped should not contribute to the
overall similarity. In our implementation we define FW as follows:

FW ((sn1, . . . , sni), (se1, . . . , sej), nN , nE) =
sn1 + · · ·+ sni + se1 + · · ·+ snj

nN + nE

Please note that each mapping m can be interpreted as a particular suggestion
for the reuse of the case workflow: the mapped case nodes and edges should be
considered solution elements for the respective nodes and edges in the query. The
similarity value for the mapping assesses the utility of this reuse opportunity. For
a case there are usually several mappings that reflect different ways of reusing
the case. Hence, the overall workflow similarity sim(QW,CW ) is determined by
the best mapping (see also [5]), i.e the mapping with the highest similarity:

sim(QW,CW ) = max{simm(QW,CW )| mapping m}.

To summarize, the presented similarity model for workflows is defined by three
model parameters, 1st the similarity function simΣ for semantic descriptions,
2nd the aggregation function for edges FE , and 3rd the aggregation function for
workflows FW .

3.3 Experimental evaluation

We now focus on the question, whether the computed similarity values are ap-
propriate within the context of a CBR application aiming at retrieving workflows
for reuse. For this purpose, the similarity measures should be able to approxi-
mate the utility of the cases wrt. the problem formulated within the query (see
[2], p.94ff.) in the context of the concrete application. Moreover, a good and
broadly applicable similarity model should enable to flexibly determine appro-
priate model parameters for many applications. Whether this is the case, can of
course only be assessed by analyzing a series of real-world applications. As a first
step towards this goal, we developed two initial workflow retrieval applications
in two complementary domains: administrative business workflows (similar to
Fig. 1a) and scientific data mining workflows (similar to Fig. 1b). Based on our
previous work [17, 9] we developed for each domain an ontology for workflows,
tasks (and data) as well a case base of 20 workflows. For both domains, the
average number of nodes in the cases is 10; the average number of edges is 18.



The aim of the first experiment is to show, whether it is possible to model
similarity measures that approximate the utility assessment of a human user.
More precisely, the hypothesis is:

H1: The similarity model enables to define model parameters such that the com-
puted similarity is better aligned with an expert’s assessment than a lexical
similarity measure.

For each domain we determined 10 queries that are related to the 20 cases in the
case base. For each query, an expert was asked to select the 5-6 best suitable cases
in the case base and to determine a partial order among those best cases. For
each domain, a similarity model was developed by hand: similarity values within
simΣ have been adjusted manually and the functions FE and FW are those
mentioned before in this section. For each query, we computed the similarity
of each case in the case base by applying an exhaustive search algorithm that
computes all mappings, thereby producing an optimal solution. As baseline for
the comparison, we computed the similarity by a lexical similarity measure, in
particular a Levenshtein similarity measure on the task and data names. Besides
this, the same functions FE and FW were used.

For both similarity measures, we compared the ordering of the cases with
those of the human expert. As a measure of correctness we used the ranking
measure proposed by Cheng et al. [6]: They define the correctness and com-
pletness of an ordering A with respect to a reference order A∗ based on the
concordance C of the two orders, i.e., by the number case pairs ordered equiv-
alently by both orders and by the discordance D, i.e. by the number of case
pairs for which both orders differ. Correctness and completeness are defined as
follows: Corr = (C −D)/(C +D) and Compl = C/| A∗ |.

In our evaluation we determine for each of the 10 query workflows QW the or-
der on the 20 cases through: CW1 A CW2 iff sim(QW,CW1) > sim(QW,CW2).
The partial reference order A∗ is given by the human ranking for the same query.
The value for correctness is within the interval [-1,1]. If it has a value of 1 then
every ordering stated in A is correct, if it has a value of -1, every ordering stated
in A contradicts the reference order. A value of 0 indicates that there is no
correlation between both orders. The completeness value is within the interval
[0,1]. The higher the value the more orderings are contained in A (compared to
situations in which A does not distinguish the cases due to equal similarity).
Figure 3 shows the results of the evaluation for the semantic similarity measure

Similarity Correct Complete Retrieval Time Correct Complete Retrieval Time

Semantic 0.708 0.910 24.00 sec 0.840 0.693 8.00 sec

Lexical 0.542 0.911 24.36 sec 0.593 0.751 7.78 sec

Administrative business workflows Scientific data mining workflows

Fig. 3. Similarity Measure Evaluation.



compared to the Levenshtein measure for both domains. The averaged correct-
ness and completeness values over all 10 queries are displayed. The figure clearly
shows an improved correctness for the semantic similarity measure in both do-
mains, while the completeness slightly suffers for the data mining workflows.
This clearly confirms the hypothesis H1.

Additionally, Fig. 3 shows the average retrieval time over all 10 queries using
linear retrieval over the full case base, applying exhaustive search for similarity
assessment. These figures clearly show that this approach is computationally un-
acceptable for practical applications. This motivates our work on a more scalable
framework, described in the next section.

4 Similarity Computation and Workflow Retrieval

While similarity computation by exhaustive search guarantees to find the op-
timal match, it is computationally not feasible. Greedy search is proposed as
alternative search algorithm for similarity assessment of workflow graphs [14, 8,
5] as it enables to quickly find a local optimum. However, the resulting error can
hardly be controlled as the local optimum can differ significantly from the global
optimum, hence producing too low similarity values. The A* search algorithm
promises to be good alternative over the above mentioned approaches, given a
well-informed admissible heuristic function can be determined. In the following,
we will develop several A* search variants and demonstrate their performance
and similarity error in experimental evaluations.

4.1 Similarity Computation by A* Search

The A* algorithm maintains a priority queue of open search nodes. In each
step, the first (best) node in the queue is removed. If it represents a solution,
A* terminates. Otherwise this node is expanded, i.e. each successor node in the
search is determined and inserted into the priority queue. When applied for
finding the best match m between a query and a case graph elements, a search
node S basically represents the current mapping S.m as well as the not yet
mapped nodes S.N and edges S.E. During node expansion, the mapping S.m
is extended in all possible ways by one additional mapping of a node or edge.
The order in which the expanded nodes are inserted into the priority queue
is essential for A*. Therefore, each search node S is evaluated by a function
f(S) = g(S) +h(S). In the traditional formulation, A* aims at minimizing cost,
hence g(S) are the cost already occurred and h(S) is a heuristic estimation
function for the remaining cost to the solution. As we apply A* for maximizing
the similarity value, the functions must be interpreted differently, i.e. g(S) is the
similarity of the current mapping S, while h(S) is an heuristic estimation of the
additional similarity that can be achieved through the mapping of the remaining
nodes and edges. Nodes are inserted into the priority queue in decreasing order of
f(S), i.e. the search node with the highest f -value is expanded first. To achieve
an admissible heuristic estimation function, h(S) must be an upper bound of



the similarity. In the A* algorithm shown below, the value f(S) is also stored in
the search node, noted as S.f . The following A* search algorithm (divided into
the top level looping algorithm and the separate expansion function) is called
with a query workflow QW and a case workflow CW and returns the similarity
value.

A*Search (QW = (Nq, Eq, Tq, Sq), CW = (Nc, Ec, Tc, Sc))
{ S0.N = Nq; S0.E = Eq; S0.m = ∅; S0.f = 1; Q =< S0 >;

while first(Q).N 6= ∅ and first(Q).E 6= ∅ do { Q = Expand(Q) };
return(first(Q).f); }

Expand (Q)
{ S = first(Q); Q = rest(Q); xq =select(S);

forall xc ∈ Ec ∪Nc s.th. the mapping S.m ∪ (xq, xc) is legal do
{ S′.m = S.m ∪ (xq, xc); S

′.N = S.N \ {xq}; S′.E = S.E \ {xq};
S′.f = simS′.m(QW,CW ) + h(S′);
Q =insert(S′, Q); }

Return Q; }

Here, first(Q) is the first priority queue node, rest(Q) removes the first node
and returns the rest and insert(S′, Q) inserts the new node S′ into Q according
to the f -value. During insert, the maximum size of the queue can be restricted
(maximum queue size) to cut some branches of the search tree to improve per-
formance on the risk of loosing global optimality. The select function determines
the next node or edge to be expanded. xq can be either a query node or edge.

We developed two versions of A* with different estimation and select func-
tions. The first version A* I uses a naive estimation function which assesses the
similarity of each not yet mapped node or edge as 1. Assuming the aggregation
function FW shown in Sect. 3.2, the contribution of each not mapped element
to the overall similarity is computed by hI . The select function first matches all
nodes, before the edges are selected. Which element from S.N or S.E is selected
is not determined; we choose randomly according to an internal node/edge id.

hI(S) = |S.N |+|S.E|
|Nq|+|Eq|

selectI(S) =

{
nq ∈ S.N if S.N 6= ∅
eq ∈ S.E otherwise

The second version A* II uses a better informed admissible heuristic. For
each not mapped query node or edge it determines the maximum possible simi-
larity a mapping can achieve independent of the mapping of the other nodes or
edges. These values can be computed prior to search and cached. Also it aims at
matching edges as soon as possible. As matching edges requires the connecting
nodes being matched already, the edge expansion does lead to a low branching
factor. It is 1 if between two nodes there is at most one edge per type. Hence
the size of the queue does not increase, while the accuracy of f(S′) increases.



hII(S) =
∑

x∈S.N∪S.E

(
max

y∈Nc∪Ne

{simE/N (x, y)}
)
· 1
|Nq|+|Eq|

selectII(S) =

{
eq ∈ S.E if eq.l /∈ S.N and eq.r /∈ S.N
nq ∈ S.N otherwise

4.2 Parallelized A* Retrieval

While the described A* algorithms aim at improving performance of a single
similarity assessment, linear retrieval with large case bases will still require one
run of the search algorithm per case in the case base. To ensure better scalability
with growing case bases, we now propose a parallelized A* II variant, called
A*P. It enables to compute the top k cases from the case base without fully
computing the similarity for all cases. Therefore the search process is parallelized
for all cases, maintaining one queue Qi for each case. In every step, the node
from the queue with the highest f -value from all queues of not already finished
search processes is expanded. Search terminates, when at least k searches have
terminated and when the similarity of the k-best case is higher than all f -
values of the remaining queues. Since the f -values are upper bounds for the final
similarity, it is ensured that none of the remaining cases can ever exceed the
similarity of the known k-best case. Hence, completeness of k-best retrieval is
guaranteed. The following algorithm returns the list of the k-best cases (and
possibly some more) together with its similarity value.

A*P Retrieval (QW = (Nq, Eq, Tq, Sq), CB = {CW1, . . . , CWn}, k)
{ S0.N = Nq; S0.E = NE ; S0.m = ∅; S0.f = 1;

for i = 1 . . . n do { Qi =< S0 > } ;
res = ∅;
repeat
{ j = arg maxi/∈res{first(Qi).f} ;
Qj =Expand(Qj) ;
if first(Qj).N = ∅ and first(Qj).E = ∅ then res = res ∪{j} ;
} until |res| ≥ k and k-th(first(Qi).f |i ∈res) ≥ maxj /∈res{first(Qj).f} ;
return {(first(Qi).f, i) | i ∈res} }

4.3 Experimental Evaluation

We evaluated the performance of the three A* variants also in relation to ex-
haustive search and greedy search. The hypotheses to be evaluated are:

H2a: The average retrieval time of A*I is shorter than exhaustive search.
H2b: The average retrieval time of A*II and A*P is shorter than of A*I.
H2c: The average similarity error of A*I,II,P are lower than of greedy search.
H2d: The average retrieval time of A*P is lower than A*II, if k << |CB|.
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Fig. 4. Retrieval performance: Administrative business workflows

Retrieval 
Method

Qsize k Retrieval 
time [sec]

Similarity 
Error

Exhaustive 937.500

Greedy 1 20 0.028 0.100
10 20 0.415 0.090

A*  I 100 20 5.244 0.069
300 20 19.937 0.055

1 20 0.345 0.037
A*  II 10 20 0.852 0.020

100 20 7.093 0.007
1 5 0.311 0.005

A* P 10 5 0.667 0.007
100 5 5.663 0.004
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Fig. 5. Retrieval performance: Scientific data mining workflows

We tested the hypotheses for the two workflow domains. The similarity mod-
els and the case base of 20 cases from Sect. 3.3 are used. To assess the retrieval
performance we used 30 queries for each domain: the 10 queries from Sect. 3.3
plus the 20 cases of the case base itself. We determined the average retrieval
time per query as well as the average similarity error of the retrieved cases. As
a base line for this we determined for each query and case the optimal similarity
value by running the search algorithms over a very long time period.

Figures 4 and 5 show the results for the two domains for the different A*
variants with different limits on the queue size. A*P is evaluated for k = 5 (out
of 20 cases). For the other algorithms the performance does not depend on the
number of cases to be retrieved. The graphs plot the similarity error over the
retrieval time (logarithmic scale). Increasing the queue size limit clearly leads



to an increased retrieval time, but also to a reduced error. The figures clearly
indicate that the hypotheses H2a,b and c are confirmed. Concerning H2d, the
advantage of A*P over A*II is not very dominant. Therefore, we performed
an additional experiment with a case base of 203 cases from the scientific data
mining domain used in [9]. Figure 6 shows the average retrieval time for different
values of k. It clearly confirms hypothesis H2d.

Qsize  A* P,  k =5  A* P, k =10 A* II

10 0,386 0,483 3,04 

100 0,667 3,98 14,15

Retrieval Time [sec]

Fig. 6. Retrieval performance: Scientific data mining workflows, 203 cases

5 Conclusion and Future Work

We generalize and extend previous approaches for workflow similarity using
graph-based representations in several ways. We explicitly cover data centric
as well as control-flow centric workflows. We link with semantic representa-
tions and introduce knowledge intensive similarity measures according to the
local/global principle. Further extensions are desirable to represent hierarchical
workflows. The proper treatment of workflow agility requires representing work-
flow instances (rather then templates as in the current approach) including the
execution state. Also, more practical experience with applications of the model is
needed, involving semantic models of a larger scale. This also raises the question
of methodologies for developing appropriate similarity models. New methods for
learning similarity measures are demanded as a tool for this purpose.

The developed similarity assessment and retrieval algorithms show a satisfy-
ing performance in terms of computation time and retrieval error. We demon-
strated scalability to medium sized case bases, but an extension to case base
sizes � 1000 may require a course-grained pre-selection of cases according to
the MAC/FAC idea, as proposed by Leake et al. [14]. A case retrieval net over
the semantic descriptions seems a suitable approach for this purpose to be inves-
tigated in future research. Also, the extension of A*P towards a multi-threaded
variant exploiting the parallelization of multi-core CPUs seems promising. Fu-
ture work could also explore whether kernel methods for labeled graphs are a
suitable alternative approach for similarity assessment of workflows.
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